首页> 外文OA文献 >Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems
【2h】

Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

机译:阵列雷达/ SAR传感器系统自适应成像的动态实验设计正则化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.
机译:我们考虑根据非线性不适定反问题形式化的高分辨率阵列雷达/ SAR成像问题,该问题是通过内核观测到的从遥感场景散射的随机波场的功率空间谱图(SSP)的功率空间谱图(SSP)的非参数估计信号形成算子,并被随机的高斯噪声污染。首先,构造Sobolev型解决方案空间以指定一致性内核SSP估计量的类别,该类具有适用于此类解决方案空间中指标的重现内核结构。接下来,将基于“无模型”变异分析(VA)的图像增强方法和“基于模型”的描述性实验设计(DEED)正则化范式统一到一个新的动态实验设计(DYED)正则化框架中。提出的DYED框架在自适应阵列雷达/ SAR成像问题中的应用导致了一类两级(DEED-VA)正则化SSP重建技术,该技术将内核自适应各向异性窗口与投影集中到凸集上,以增强一致性和整体迭代SSP估计量的鲁棒性。我们还展示了如何将提出的DYED正则化方法视为MVDR,APES和其他高分辨率非参数自适应雷达传感技术的概括。构造了一系列与DYED相关的算法,并最终通过数值仿真说明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号